Distance irredundance and connected domination numbers of a graph
نویسندگان
چکیده
Let k be a positive integer and G be a connected graph. This paper considers the relations among four graph theoretical parameters: the k-domination number k(G), the connected k-domination number c k (G); the k-independent domination number i k (G) and the k-irredundance number irk(G). The authors prove that if an irk-set X is a k-independent set of G, then irk(G) = k(G) = k(G), and that for k 2, c k (G) = 1 if irk(G) = 1, k(G) max{(2k + 1)irk(G) − 2k, 5 2 irk(G)k − 7 2k + 2} if irk(G) is odd, and c k (G) 5 2 irk(G)k − 3k + 2 if irk(G) is even, which generalize some known results. © 2006 Elsevier B.V. All rights reserved.
منابع مشابه
Independence Saturation and Extended Domination Chain in Graphs
The six basic parameters relating to domination, independence and irredundance satisfy a chain of inequalities given by ir ≤ γ ≤ i ≤ β0 ≤ Γ ≤ IR where ir, IR are the irredundance and upper irredundance numbers, γ,Γ are the domination and upper domination numbers and i, β0 are the independent domination number and independence number respectively. In this paper, we introduce the concept of indep...
متن کاملDistance Domination and Distance Irredundance in Graphs
A set D ⊆ V of vertices is said to be a (connected) distance k-dominating set of G if the distance between each vertex u ∈ V − D and D is at most k (and D induces a connected graph in G). The minimum cardinality of a (connected) distance k-dominating set in G is the (connected) distance k-domination number of G, denoted by γk(G) (γ c k (G), respectively). The set D is defined to be a total k-do...
متن کاملOn the edge geodetic and edge geodetic domination numbers of a graph
In this paper, we study both concepts of geodetic dominatingand edge geodetic dominating sets and derive some tight upper bounds onthe edge geodetic and the edge geodetic domination numbers. We also obtainattainable upper bounds on the maximum number of elements in a partitionof a vertex set of a connected graph into geodetic sets, edge geodetic sets,geodetic domin...
متن کاملOn the ratios between packing and domination parameters of a graph
The relationship ρL(G) ≤ ρ(G) ≤ γ (G) between the lower packing number ρL(G), the packing number ρ(G) and the domination number γ (G) of a graph G is well known. In this paper we establish best possible bounds on the ratios of the packing numbers of any (connected) graph to its six domination-related parameters (the lower and upper irredundance numbers ir and IR, the lower and upper independenc...
متن کاملClasses of Graphs for Which Upper Fractional Domination Equals Independence, Upper Domination, and upper Irredundance
This paper investigates cases where one graph parameter, upper fractional domination, is equal to three others: independence, upper domination and upper irredundance. We show that they are all equal for a large subclass, known as strongly perfect graphs, of the class of perfect graphs. They are also equal for odd cycles and upper bound graphs. However for simplicial graphs, upper irredundance m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Mathematics
دوره 306 شماره
صفحات -
تاریخ انتشار 2006